LANGLEY SUB-L'BRARY RM No. E8107 NACA RM No. E8107 Unavailable Inactive R 1EMOR'AN Inactive MOLLIN EXPERIMENTAL PRESSURE DISTRIBUTION ON FUSE NOSE AND PILOT CANOPY OF SUPERSONIC AIRP · Merenterices, OR GIVEN FUNTIVER AT MACH NUMBER 1.90 By DeMarquis D. Wyatt Flight Propulsion Research Laborator Cleveland, Ohio CLASSIFICATION CHANGEI APPROVAL CP , TO BY MOLYER **RANBMITT** LINCLASSIFIED TACA Ree aba YRN-126 By authority of effective apr. 15, 1958 1m1 5-8-58 NATIONAL ADVISORY COM TFF FOR AERONAUTICS LIBRARY COPY WASHINGTON JAN 15 1954 OCT 1 5 1948 LANGLET ACROWAUTICAL LABORATOR LIBRARY, NACA GLEY FIELD. VIRGINIA Inavailable

NACA RM No. ESIO7

EXPERIMENTAL PRESSURE DISTRIBUTION ON FUSELAGE NOSE AND PILOT CANOPY OF SUPERSONIC AIRPLANE

AT MACH NUMBER 1.90

DeMarquis D. Wyatt, Aeronautical Research Scientist.

2

Approved:

020

John C. Evvard, Physicist.

Abe Silverstein, Aeronautical Research Scientist. jgm

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

EXPERIMENTAL PRESSURE DISTRIBUTION ON FUSELAGE

NOSE AND PILOT CANOPY OF SUPERSONIC AIRPLANE

AT MACH NUMBER 1.90

By DeMarquis D. Wyatt

SUMMARY

An investigation of the pressure distribution on the fuselage nose and the pilot canopy of a supersonic airplane model has been conducted at a Mach number of 1.90 over a wide range of angles of attack and yaw. The pressure distributions conformed to anticipated trends. Boundary-layer separation apparently occurred from the upper surface at angles of attack above 24° and from the lower surface at -15°. No separation from the sides of the fuselage was evident at yaw angles up to 12° .

INTRODUCTION

Theoretical methods are available for the calculation of pressure distributions on conical bodies and axially symmetric nonconical bodies in a supersonic stream, but no satisfactory methods are available for the treatment of arbitrary nonconical bodies without axial symmetry. In order to determine the pressure distribution on a nonconical airplane fuselage without axial symmetry, a model was experimentally investigated. Data were obtained over a wide range of angles of attack and yaw at a Mach number of 1.90 in the NACA Cleveland 18- by 18-inch supersonic tunnel.

APPARATUS AND PROCEDURE

The test-section Mach number in the 18- by 18-inch supersonic tunnel in the region in which the model was located was 1.90 \pm 0.02, as determined by a calibration of the tunnel. Tunnel-inlet conditions were maintained at a stagnation temperature of $150^{\circ} \pm 10^{\circ}$ F and a dew-point temperature of $-10^{\circ} \pm 10^{\circ}$ F. The Reynolds number of the model, based on the model length, was approximately 3.8 $\times 10^{\circ}$.

Photographs of the brass model of the fuselage nose and the pilot canopy of a supersonic airplane are presented in figure 1. A sketch of the model showing principal dimensions and typical cross sections is presented in figure 2. The length of the model over which pressures were measured was 13.50 inches. Static-pressure orifices of 0.013-inch diameter were located along several longitudinal body lines of the model. The orifice locations are given in table I in terms of the ratio x/L and the angle θ , where xis the distance from the tip of the model to the orifice, L is the length of the model over which pressures were measured (13.50 inches), and θ is the angle between the top of the model and the orifice, measured in a clockwise direction looking forward. Pressures were recorded from a multiple-tube manometer board using tetrabromoethane as a fluid and were read to the nearest 0.05 inch of fluid.

The model was supported from the rear by a cylindrical body that was pinned to a strut passing through the bottom of the tunnel (fig. 1(a)). The strut was split and could be adjusted from outside the tunnel to vary the angle of attack of the model during operation of the tunnel. The angle of attack of the model was determined from cathetometer measurements taken during operation. For variations in yaw angle, the model was rotated 90° in the mounting from the position shown in figure 1(a).

The investigation was conducted at 0° angle of yaw over an angle of attack range from -15° to 30° , and at 0° , 5° , and 10° angles of attack over an angle of yaw range from -15° to 15° . Adaptor mountings were inserted between the model and the support body to give the 5° and 10° angles of attack for the investigation of yaw effects at angles of attack. The model was centered in the tunnel at 0° deflection for all phases of the investigation in which the yaw angle was varied and for runs at negative angles of attack and 0° yaw. In order to avoid tunnel-wall interferences, the model was lowered about 3 inches in the tunnel for positive angle of attack at 0° yaw angle.

RESULTS AND DISCUSSION

Data are presented in tables II to ∇ in the form of pressure coefficient C_p at each orifice for each condition investigated. The pressure coefficient is defined by the equation

$$C_{\rm p} = \frac{p - p_{\rm O}}{q_{\rm O}} \tag{1}$$

2

3

where p is the local surface pressure, p_0 is the free-stream static pressure, and q_0 is the free-stream dynamic pressure.

The data presented in table II were obtained with the model at two vertical positions in the tunnel. Pressure coefficients measured at 0° angle of attack varied as much as 0.08 for corresponding orifices between the two runs. Check runs substantiated this discrepancy. The variable yaw angle tests were made with the model centered in the tunnel in the same vertical position as for the negative angle of attack tests, but the data for 0° angle of yaw (tables III to V) show good agreement with the data obtained at positive angle of attack. Because of the agreement between the data for positive angles of attack and data for variable yaw angles, the data in table II for negative angle of attack are believed to be incorrect.

Typical schlieren photographs of the model are presented in figure 3 for conditions of 0° yaw angle and several angles of attack. An apparent pronounced boundary-layer separation from the top (expansion) surface of the model was observed at angles of attack of 30° and 24° (figs. 3(a) and 3(b)). Inconsistent variations in the pressure coefficients measured on the upper surface that were observed for these conditions are attributed to the apparent separation.

The boundary layer did not appear to separate from the body at the lower angles of attack, although the layer was appreciably thickened about halfway between the tip and the pilot canopy at 18° angle of attack (fig. 3(c)). Below an angle of attack of 18° , no thickening of the boundary layer was evident (figs. 3(d) to 3(f)). The boundary-layer growth on the lower surface was moderate at -6° angle of attack (fig. 3(g)), but separation appeared to occur near the tip at -15° (fig. 3(h)).

The apparent line of discontinuity in the separated region adjacent to the upper surface of the body at 24° angle of attack (fig. 3(b)) cannot be explained. This line was noticeable near the canopy at 21° angle of attack and persisted up to 27° angle of attack. The line was not transient, being visible on the schlieren screen during steady observation of the flow.

The schlieren photographs in figure 4 are typical of those obtained for all runs at variable yaw angle. Operation up to yaw angles of 12^o caused no appreciable thickening or observable separation of the boundary layer.

Pressure distributions along longitudinal planes on the model are plotted in figure 5 from the data in table II for a representative range of angles of attack at 0° yaw angle. Data for 0° angle of attack were taken from only the positive angle of attack run. The pressure coefficient trends conformed to the anticipated trends. Because of flow expansion along the nonconical body, the pressures decreased in a rearward direction. Pressures increased appreciably on the canopy as compared with the fuselage nose because of the shock originating from the canopy. The canopy had no influence on the pressures on the lower part of the body.

Longitudinal pressure distributions are plotted in figures 6 to 8 for a range of yaw angles at 0° , 5° , and 10° angles of attack, respectively. Because of body symmetry about the vertical plane through the center line of the body, it was expected that the values of pressure coefficient measured at the intersection of this plane with the top and the bottom of the body would be the same for both positive and negative yaw angles. The experimentally measured pressure coefficients were the same for positive and negative angles of yaw, indicating uniform conditions in the tunnel air stream.

Radial pressure distributions at two locations on the body are presented in figures 9 to 12. Data for these figures were obtained from the faired curves of figures 5.to 8. The pressure distribution at x/L = 0.148 (section A-A, fig. 2) was qualitatively typical of the pressure distribution at any point on the fuselage nose ahead of the canopy. The distribution at x/L = 0.898 (section E-E, fig. 2) was similarly typical of the flow over the rear section of the canopy. Because of the body symmetry about the vertical center line, curves are presented for only the negative angles of yaw in figures 10 to 12; the curves of the data for positive angles of yaw are mirror images of the curves shown.

Pressure distributions on the flat pilot canopy are indicated in figures 13 to 16 for representative test conditions. The rearward orifices were located on the right side of the canopy, but the appropriate data are transposed in these figures to indicate the pressures on the left canopy surface. A double set of values is given at one orifice location. The upper value was measured on the left and the lower value was measured on the right canopy surface.

SUMMARY OF RESULTS

The following results were obtained from an investigation of the pressure distribution on the fuselage nose and the pilot canopy of a supersonic airplane model at a Mach number of 1.90 and a Reynolds number of 3.8×10^6 :

1025

570

1. Measured longitudinal pressure distribution trends conformed to anticipated trends. Pressures decreased in a rearward direction on the fuselage nose, corresponding to a flow expansion about the nonconical body. The compression shock originating from the canopy increased pressures on the canopy as compared with the fuselage nose. The canopy had no influence on pressures on the lower surface of the fuselage.

2. Apparent boundary-layer separation from the top surface of the body was observed at angles of attack above 24° and from the bottom surface at -15° angle of attack.

Flight Propulsion Research Laboratory, National Advisory Committee for Aeronautics, Cleveland, Ohio, September 7, 1948.

.

TABLE I - ORIFICE LOCATIONS ON MODEL

Radial location θ , (deg)		Longitudinal location, x/L										
0	0.074	0.185	0.296	0.408	0.518	0.630	^a 0.741	0.852	0.963			
30	a.889	^a .926	^a .963		<i></i> -							
45	.111	.222	•333	.444	.556	.667	.778	a.889	^a .926			
60	a.889	a.926	² .963									
180	.093	.204	.315	.426	•537	.648	•759	.870	.982			
225	.130	.241	.352	.463	•574	.685	.796	.908				
270	.148	.259	.370	.481	.592	.704	.813	.926				
300	^a .852						* -					
315	^a .852											
330	^a .852											
340	^a .815	^a .852										
350	⁸ .778	^a .815	^a .852									
355	⁸ .778	^a .815										
								- N	ACA			

^aOrifice on canopy.

6

.

Angl	e cf ck. a	30	27	24	21	18	16	12									10	
deg	1	<u> </u>		~~						ľ				-3	-0		-12	-15
(deg) ×/L				_			Pre	ssure	coeffi	cient,	C.						
0	.184	114	126	099	048	033	011	008	005	.012	.009	.028	.054	.082	.126	.144	.174	.226
	.296	283	164	077	041	023	025	018	013	021	001	.016	.009	.024	.050	.080	.124	.189
	.518	282	271	086	087	028	025	017	015	012	010	.008	.006	.026	.044	.073	.116	.172
1	.630	302	304	144	087	049	034	055	031	015	021	014	.008	.015	.040	.070	.098	.15
!	.852	288	340	125	009	.012	.014	.018	.017	.020	.025	.049	.064	080	.107	.142	.181	.230
	.983	190	290	137	058	014	.008	.003	.014	.030	.026	.031	.052	071	099	.134	173	.219
30	.889	227	293	229	- 191	199	029	.070	.073	.083	.087	.024	.138	.127	.125	.132	-148	.178
	.965	237	283	243	213	177	050	.029	.037	.054	.066	.082	.109	.123	.133	.148	.184	.191
45	.111	241	236	208	176	142	093	045	021	.005	.005	.018	.040	.053	.077	.093	.090	.100
	.333	290	275	237	228	193	139	085	030	003	012	.008	.021	.033	.042	.060	-088	.105
	.444	297	280	237	231	178	116	049	040	023	014	.003	.006	.012	.022	.030	.048	.080
	. 666	292	308	256	223	190	108	054	030	024	014	0	.010	.013	.031	.041	.057	.082
	.778	300	315	248	219	194	132	028	028	017	004	001	.015	.021	.028	.039	.054	.074
	.889	274	298	213	123	095	086	099	.099	.105	.110	.128	.144	.137	.148	.136	141	.159
ļ	.928	256	289	238	142	093	135	.060	.065	.080	.088	.098	.123	.124	.134	.144	.152	.174
60	880	246	- 299	- 997	- 000	- 064		.012		.066	.078	.089	.116	.124	.133	.147	.162	.182
	.926	236	293	226	156	077	060	6.010	.085	.082	.089	.120	.123	.126	.148	.151	.151	.168
	963	234	291	198	150	083	055	.002	.056	.070	.081	.088	.113	.118	.120	.127	.137	.153
180	.204	.677	.693	.618	-444	.399	.328	.281	.190	-133	.095	.054	.085	.055	-031	001	023	040
	.315	.619	.696	.440	.359	286	.224	.165	:110	.074	.041	.005	.019		011	019	026	051
	.637	.507	.476	.399	.322	.251	.186	.134	.086	.049	.023	004	.004	013	023	028	040	055
	.648	.617	.436	.361	.289	.218	.160	.109	.068	.035	.013	003	.002	012	016	022	- 040	058
	870	.503	.417	.340	.267	200	.140	.094	.055	.022	.001	011	0.015	012	019	029	049	081
	.982	.490	.417	.348	.277	.202	.139	.092	.052	.028	.009	003	.010	.006	.004	003	1.017	040
225	.130	-282	.241	.201	.184	.151	.117	.083	.082	.072	.051	.035	.051	.028	.007	032	070	108
	.352	.229	.177	.138	.101	.072	.043	.025	.016	.019	.021	.007	.017	.001	021	054	082	115
	.463	.186	.144	.105	.067	.038	.012	008	002	.002	.006	0 000	.005	009	032	052	072	107
•	665	.146	.103	.067	.030	0	024	024	024	014	008	002	.005	008	025	046	061	- 093
	908	.125	.084	.048	.016	016	038	045	043	021	014	008	.010	007	030	048	058	098
270	.148	219	215	193	171	155	115	060	045	003	.001	.027	-029	-050	.035	.032	003	087
	.259	194	198	191	187	177	166	106	064	035	004	005	.005	.012	.008	006	013	021
	.481	174	167	167	154	166	146	117	068	028	006	-013	.019	.016	.010	002	- 018	023
	.692	177	145	160	157	157	150	120	081	045	021	008	.004	.003	008	029	035	050
	.816	202	1.147	175	179	165	-,138	132	093	041	025	018	004	002	004	019	042	062
	.926	132	045	042	052	-,032	001	.027	.067	.091	.101	.103	.117	.104	.089	.058	.020	008
315	.852	125	025	041	052	087	099	-017	,102	,126	.133	.128	154	.163	.150	148	.149	.157
330	.652	176	066	121	.094	-,193	063	.003	.102	.005	.122	.002	194	.107	.147	.157	1.161	175
340	-815	141	100	155	140	176	.021	.073	.061	.084	.089	.087	.137	.148	.151	.154	.171	.204
350	.852	164	098	161	150	168	.042	.075	.067	.072	.070	.072	,106	.115	.137	.154	.168	.195
990	.815	056	197	128	145	060	.047	.046	.041	.042	.042	.060	.085	.086	.101	.118	.143	.180
	.852	082	198	141	-,148	021	.056	.045	.043	.046	.045	057	.094	.114	.139	163	.187	.222
356	.778	063	225	102	091	.006	.047	.043	.058	.038	.036	.054	.077	.089	.109	.131	.163	.206
		-1014	-+0.27	109	010	*004	.000	.0.1	-041	.009	.040	•048	•118	.112	.130	.153	*189	.245

TABLE II - TABULATED PRESSURE COEFFICIENTS AT 0° YAW ANGLE FOR RANGE OF ANGLES OF ATTACK

NACA

4

7

.

1025

÷

÷

NACA RM No. E8107

Angle	of	1 10					1 -			1 10
deg	•	21			ľ		-0	-0	-8	-12
6 (deg)	x/L			Pre	scure	ooeffi	cient,	с _р		
0	.074	134	072	007	.044	.051	.030	018	080	134
	.185	1152	101	036	.015	.025	.003	043	101	1152
	408			061	015		- 020	063	1-102	139
	.518	133	100	062	019	.004	017	052	- 088	128
	.630	121	099	071	022	011	040	092	120	143
	.741	186	180	152		.041	077	162	180	194
	.852	167	144	093	013	.034	025	102		161
30	220	- 043	- 017	010	070	101	176	370	034	13/
	.926	048	.015	.044	.076	.096	.118	.149	187	.234
	.963	025	.015	.044	.068	.085	.109	.140	.179	.224
45	.111	096	028	003	.024	.036	.054	.076	.099	.126
	.222	110	054	020	.004	.018	.036	.055	.075	.109
	.333	140	020	016	006	.001	.017	.035	.057	.083
	.555	- 185	052	- 023		003	.008	.020	.034	-062
	. 666	190	074	030	019	015	002	.015	029	.052
	.778	164	086	034	012	005	0	.006	.019	.039
i	.852	048	.017	.057	.088	.122	.169	.201	.251	.303
I	• 889 024	132	048	.055	.093	.127	.155	.191	.234	•285
	963	- 057	024	.047	.074	1,100	.128	.165	.203	.202
60	.889	040	.078	.091	107	134	1.1.61	100	050	302
	.926	085	.033	.055	.083	.114	.146	.185	.233	280
	.963	096	.043	.065	.073	.095	.123	.161	.204	.246
180	.093	.001	.028	.054	.072	.066	.063	.055	.036	.010
	.204		005	.011	.019	.026	.022	.014	008	027
	.315	034	016	.004	.013	.014	.017	005	018	041
	.537	063	- 039	- 021	001	- 002	009	014	032	054
	.648	069	045	023	006	008	010	020	044	071
	.759									
	.870	065	039	019	007	008	016	028	049	073
225	130	000	037	019	001	.001		018	043	072
660	.241	.060	.052	-040	.002	.020	.004	023	027	069
1	.352	.041	.038	.034	.025	.020	011	033	054	067
	.463									
{	.574	.016	.006	.006	.005	002	013	031	050	081
	.704	017	001	.005	002	010	- 009	- 010	- 000	063
	.908	023	014	004	.006	.008	.005	005	024	039
270	.148	.145	.124	.086	.048	.025	.009	006	010	033
	.259	.137	.083	047	.025	.003	009	017	026	041
	.370	.125	.085	.049	,924	.010	007	009	022	034
	•481	.103	.061	.038	.013	007	014	020	030	046
	.704	.078	.041	.018	°003	- 013	- 019	- 020	- 032	- 050
}	.816	.072	.039	.014	002	018	021	025	031	042
	.926	.263	.216	.170	.134	.096	.072	.055	.052	068
300	.852	.255	.251	.209	.175	.130	.112	.098	.097	072
315	. 852	.313	.258	.203	.169	.132	.093	.070	.012	035
330	,852	,273	.224	.175	.137	.099	.066	.019	046	076
340	.815	.245	200	.156	.121	.072	.033	017	055	087
	.852	-237	-194	152	-117	-080	.048	.008	048	091
300	.778	.209	.178	.142	.113	.054	.011	034	091	142
	.552	.196	160	.122	.090	.058	.028	0.010	- 188	229
355	.778	.183	.160	.128	.093	.048	.001	135	- 224	237
	-815		.148	.119	.091	.058	.017	-,158	190	218

TABLE III - TABULATED PRESSURE COEFFICIENTS AT O° ANGLE OF ATTACK FOR RANGE OF YAW ANGLES

NACA

e

.

. 8

Angle	of	T		1	~		T		1	
yaw, i deg	g T	12	9	6	3	0	-3	-6	-9	-12
8 (deg)	x/L			Pre	ssure	coeffic	cient,	cp	<u> </u>	<u> </u>
0	.074	115	066	017	.027	.035	.014	014	057	102
	.185	111	070	028	.006	.016	.001	028	061	095
	.296	- 102	071	038	004	.012	002	024	052	079
f	.518	096	062	033	009	.008	001	020	052	082
	. 630	086	054	027	908	.004	014	030	054	088
	.741	133	103	075	019	.056	027	051	079	111
	.963	108	- 052	.003	.008	.052	.010	019	053	088
30	.669	050	017	.070	.105	.128	.148	.185	.213	.249
	.926	084	- 021	.058	.088	.110	.131	.167	.197	.232
	.963	089	013	.058	.078	.096	.107	.137	.164	.197
45	-111	047	020	.006	.020	.026	.028	.044	.065	.077
	.333	073	018	002	.003	.020	.028	.039	.035	.086
	.444	093	029	007	0	.004	.002	.010	.021	.032
	.585	100	036	008	.005	.004	.006	.012	.020	.033
	.566	~•094	042	014	005	.002	.006	.011	•017	.032
	.852	-034	.106	-119	.121	1.151	1.177	211	.242	.287
	.889	.044	.087	.112	.117	.138	160	.197	.228	.273
	.926	012	.044	.083	.097	.121	.145	.181	.213	.250
	.963	039	.043	.068	.079	.102	.123	•159	.194	.231
60	.989	.102	.128	.118	.117	.147	145	.202	,230	.274
	.963	.051	.049	.067	.081	109	.134	.173	.211	.251
180	.093	.083	.103	.124	.136	.126	.115	.112	.093	.069
	.204	.036	.062	.084	.093	.102	.102	.097	.087	.077
1	.315	.046	.056	.063	.072	.056	.077	076	.071	.051
	.537	.008	.021	.037	.052	.065	.059	.057	.042	.026
	.648	.008	.027	.044	.048	.059	.058	.055	.042	.025
	.759	012	.012	.027	.038	.046	•047	.049	•036	.019
	.982	.024	.039	.051	.051	.058	.060	.060	.040	.003
225	.130	.178	.167	.149	.113	.073	.037	001	041	085
	-241	153	199	200	002	037		030		
	.463	.127	.105	.083	.056	.026	009	047	084	093
	.574	.122	.101	.083	.061	.031	004	042	091	119
	• 685	.123	.093	.077	.051	.020	016	057	109	137
	.908	.149	.141	.124	.103	.072	- 022		049	067
270	.148	.118	.090	.067	.031	.011	.002	017	048	063
	.259	.102	.064	.025	.007	0	008	033	042	068
1	- 570	.111	.065	.030	.017	.006	013	012	029	053
	.592	.083	.059	.025	.005	002	003	018 018	042	053
ł	.704	.067	.032	.006	007	010	005	011	026	058
ł	.815	.057	.028	.007	005	010	007	014	027	069
	.926	.218	.184	.163	.138	.118	.102	.088	.048	041
315	.852	- 300	.260	.203	198	154	140	101	.132	.072
330	852	269	.225	.187	.153	.124	.114	.093	•103	+003
340	.815	.235	.199	.159	.128	.098	.079	.054	.023	024
	.352	.227	.185	.151	.122	.099	.082	.042	005	053
350	.778	.201	.169	.135	.107	.076	.042	.025	011	046
	.818	.195	.161	.130	.104	.080	.048	.019	028	083
355	778	.166	.141	.114	.093	.066	.031	020		149
	.815	.149	124	.104	.086	.067	.038	055	102	143

TABLE IV - TABULATED PRESSURE COEFFICIENTS AT 5° ANOLE OF ATTACK FOR RANGE OF YAW ANGLES

NACA

.

.

NACA RM No. E8107

TABLE V - TABULATED PRESSURE COEFFICIENTS AT 10° ANGLE OF ATTACK FOR RANGE OF YAW ANGLES

Angle	of		1	<u> </u>	F					<u> </u>
Jaw, deg	Y I	12	.9	6	3	0	-3	-6	-9	-12
0 (deg)	x/L			Pres	ssure (oceffic	ient,	q ^D		
0	.074	123	088	051	012	0	015	036	073	112
	.185	110	080	044	026	012	035	046	072	101
	.296		046	046	030	018	032	053	077	104
	•408	102	077	048	025	015	032	043	065	097
	.630	- 100	- 072	- 039	- 029	012	- 021	- 030	070	080
	.741	1114	084	032	.011	-024	-007	038	- 081	1114
	852	111	090	047	0	.014	0.	049	082	112
	. 963	140	097	042	0	.006	006	063	108	139
30	.889	012	.025	.042	.077	.076	.090	.121	.147	.175
	.926	036	.022	.069	.070	.064	.072	.097	.127	.156
	.953	053	.024	.038	.050	.042	.057	.080	.103	.134
48	.111	072	055	038	021	022	028	021	017	016
	.222									
	•333	087	054	030	029	046	045	045	045	014
	.444 885	- 087	051	043	031	038	051	063	053	045
	-668	082	067	040	050	032	044	055		049
	.778	068	056	041	.052	- 022	039	065	070	057
	.852	.067	.066	073	.059	.100	.120	.141	.151	.150
	.889	.068	.059	.056	.063	.080	.099	.124	.142	.163
	.926	.057	.068	.059	.040	.066	.083	.115	.143	.171
	.963	•051	.038	.034	.028	.052	.069	.094	<u>,126</u>	.157
60	.889	.050	.022	.029	.022	.090	.104	.125	.127	.128
	043	.048	010		002	-067	026	.109	.130	147
100	005	145	160	101		204	1 100	107	367	125
190	.204	.106	.116	.143	148	.148	.141	.143	.141	.127
	.315	.101	.113	.118	.120	.126	.124	.129	.134	.127
	.426	.090	.089	.091	.097	.105	.105	.097	.095	.089
	•537	.061	.065	.077	.088	.098	.109	.116	.096	.093
	.648	.056	.062	.074	.081	.089	.080	.072	.063	.061
	.769	.039	.053	.056	.058	•068	.067	.067	.062	.057
	.082	.083	.002	.102	.110	1116	.078	108	.102	.001
295	150	.257	.211	.175	130	.079	017	035	083	136
~~~	.241	208	.195	.148	.094	.034	.024	082	- 135	-175
	.352	.220	.176	.122	.071	.024	031	094	152	191
	.463	.187	.141	.091	.046	004	057	107	162	183
	.674	.172	.133	.088	.040	007	063	114	173	206
	.685	.157	.119	.085	.024	025	081	133	197	221
	-796	140	100	.080	.013	034	089	- 139	207	202
970	140	007	014	.091	1010		001	100	101	100
210	.250	.005	015	054	076	074	007	125	167	10/
ļ	.370	.036	012	051	062	073	- 105	124	151	170
	.481	.013	031	061	075	083	104	137	140	179
	.592	003	042	067	084	088	093	122	140	- 162
	.704	023	057	076	089	097	102	104	125	146
	.615	031	066	084	088	082	091	099	119	174
-	• 450	.103	.001	.039	1001	.002	.013	014	005	202
318	203.	200	100	144	175	1090	1026	1001	-039	-017
330	.006	200	.170	142	110		1.108	1008	-047	.030
340	.815	150	.744	114	1.097	084	069	- 040		- 020
~~~	.852	168	139	.114	.083	.067	.055	- 025	013	052
350	.778	.124	.100	.086	.050	.047	.036	.004	029	081
~~	815	134	.116	.088	.063	.054	.042	005	038	087
	.852	.118	.089	.061	.042	.040	.017	022	082	125
355	.778	.105	.087	.068	.039	.042	.024	022	072	102
	.816	.087	.078	.063	.044	.044	.020	039	095	130

NACA

. ----

10

ч

Æ

11

(a) Side view showing method of support.

(b) Top view.

Figure 1. - Photographs of model used in investigation.

-

.

.

.

-

à,

<

٠

-

۰.

(c) Three-quarter front view.

(d) Three-quarter close-up rear view.

Figure 1. - Concluded. Photographs of model used in investigation.

'

٠

(a) Top view, half size.

Figure 2. - Sketch of model showing principal dimensions and typical cross sections.

ច

.

.

. .

(a) Angle of attack, 30°.

(b) Angle of attack, 24°. Figure 3. - Schlieren photographs of model at 0° angle of yaw.

•

.

٠

.

æ

(c) Angle of attack, 18°.

(d) Angle of attack, 12°.

(e) Angle of attack, 6°.

(f) Angle of attack, 0° .

Figure 3. - Continued. Schlieren photographs of model at 0° angle of yaw.

.

.

.

•

....

•

(g) Angle of attack, -5°.

- (h) Angle of attack, -15°.
- Figure 3. Concluded. Schlieren photographs of model at 0° angle of yaw.

•

¢

(e) Angle of yaw, 12°.

(b) Angle of yaw, 6°.

(c) Angle of yaw, 0° . Figure 4. - Schlieren photographs of model at 0° angle of attack.

.

.

•

.

4

.

.

(a) $\theta = 0^{\circ}$ longitudinal plane.

1025

(b) $\theta = 45^{\circ}$ longitudinal plane.

(c) $\theta = 180^{\circ}$ longitudinal plane.

Figure 5. - Continued. Pressure distributions along longitudinal planes at 0° yaw angle for range of angles of attack.

1025

1.0

Figure 5. - Concluded. Pressure distributions along longitudinal planes at 0° yaw angle for range of angles of attack.

1025

.

31

,

(a) $\theta = 0^{\circ}$ longitudinal plane.

\$

.

÷

(b) $\theta = 45^{\circ}$ longitudinal plane.

33

÷

1025

.

(c) $\theta = 180^{\circ}$ longitudinal plane.

F

.

(e) 8 = 270° longitudinal plane.

Figure 6. - Concluded. Pressure distributions along longitudinal planes at 0° angle of attack for range of yaw angles.

1025

(a) $\Theta = O^{O}$ longitudinal plane.

1025

.

.

(b) $\theta = 45^{\circ}$ longitudinal plane.

1025

I

÷

(c) $\theta = 180^{\circ}$ longitudinal plane.

r

ŧ.

(d) $\theta = 225^{\circ}$ longitudinal plane.

1025

÷.

41

ŧ

1025

-

Ą

(c) $\Theta = 180^{\circ}$ longitudinal plane.

Figure 8. - Continued. Pressure distributions along longitudinal planes at 10° angle of attack for range of yaw angles.

1025

*

(d) $\theta = 225^{\circ}$ longitudinal plane.

•

(e) $\theta = 270^{\circ}$ longitudinal plane.

(a) x/L = 0.148.

Figure 9. - Radial pressure distributions at 0° yaw angle for various angles of attack.

•

1025

4

7

(b) x/L = 0.898.

Figure 9. - Concluded. Radial pressure distributions at 0° yaw angle for various angles of attack.

ð

(a) x/L = 0.148.

Figure 10. - Radial pressure distributions at 0⁰ angle of attack for three yaw angles.

(b) x/L = 0.898.

Figure 10. - Concluded. Radial pressure distributions at 0[°] angle of attack for three yaw angles.

16.25

(a) x/L = 0.148.

51

~

(b) x/L = 0.898.

Figure 11. - Concluded. Radial pressure distributions at 5° angle of attack for three yaw angles.

Pressure coefficient ^Cp

4

(a) x/L = 0.148.

Figure 12. - Radial pressure distributions at 10⁰ angle of attack for three yaw angles.

Angle of yaw (deg)

-12 -6 0

•

(b) x/L = 0.898.

Figure 12. - Concluded. Radial pressure distributions at 10° angle of attack for three yaw angles.

.

۰.

(b) Angle of yaw, 0°.

Figure 14. - Pressure coefficients on pilot canopy at 0° angle of attack for three yaw angles.

C

3

لا نہ

з

3 1176 01435 5565

• •

·

.

ļ

.

.

{: